Accessibility Tools

Skip to main content

Molecular Neurophysiology


Mazen Makke, Alejandro Pastor Ruiz, Antonio Yarzagaray, Surya Gaya, Michelle Zimmer, Walentina Frisch, Dieter Bruns
Key determinants of the dual clamp/activator function of Complexin

Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B.
Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes.
Neuron. 2022 Oct 10 doi

Laporte MH, Chi KI, Caudal LC, Zhao N, Schwarz Y, Rolland M, Martinez-Hernandez J, Martineau M, Chatellard C, Denarier E, Mercier V, Lemaître F, Blot B, Moutaux E, Cazorla M, Perrais D, Lanté F, Bruns D, Fraboulet S, Hemming FJ, Kirchhoff F, Sadoul R.
Alix is required for activity-dependent bulk endocytosis at brain synapses.
PLoS Biol. 2022 Jun 3 doi

Knapp ML, Alansary D, Poth V, Förderer K, Sommer F, Zimmer D, Schwarz Y, Künzel N, Kless A, Machaca K, Helms V, Mühlhaus T, Schroda M, Lis A, Niemeyer BA.
A longer isoform of Stim1 is a negative SOCE regulator but increases cAMP-modulated NFAT signaling.
EMBO Rep. 2021 Dec 23 doi

Kamm GB, Boffi JC, Zuza K, Nencini S, Campos J, Schrenk-Siemens K, Sonntag I, Kabaoğlu B, El Hay MYA, Schwarz Y, Tappe-Theodor A, Bruns D, Acuna C, Kuner T, Siemens J.
A synaptic temperature sensor for body cooling.
Neuron. 2021 Oct 20 doi

Pick T, Beck A, Gamayun I, Schwarz Y, Schirra C, Jung M, Krause E, Niemeyer BA, Zimmermann R, Lang S, Anken EV, Cavalié A.
Remodelling of Ca2+ homeostasis is linked to enlarged endoplasmic reticulum in secretory cells.
Cell Calcium.2021 Sept 13 doi

Harb A, Vogel N, Shaib A, Becherer U, Bruns D, Mohrmann R.
Auxiliary Subunits Regulate the Dendritic Turnover of AMPA Receptors in Mouse Hippocampal Neurons.
Front Mol Neurosci. 2021 Aug 23  doi

Ramesh G,Jarzembowski L, Schwarz Y, Poth V, Konrad M, Knapp ML, Schwär G, Lauer AA, Grimm MOW, Alansary D, Bruns D, Niemeyer BA.
A short isoform of STIM1 confers frequency- dependent synaptic enhancement.
Cell Rep.2021  doi

Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, Boehm U, Freichel M, Bruns D.
TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses.
PLoS Biol. 2019,17(9). doi

Dhara M, Mantero Martinez M, Makke M, Schwarz Y, Mohrmann R, Bruns D.
Synergistic actions of v-SNARE transmembrane domains and membrane-curvature modifying lipids in neurotransmitter release
Elife. 2020 May 11 doi

Tian Q, Schröder L, Schwarz Y, Flockerzi A, Kaestner L, Zeug A, Bruns D, Lipp P.
Large scale, unbiased analysis of elementary calcium signaling events in cardiac myocytes.
J Mol Cell Cardiol. 2019, 135, 79-89. doi

Shaaban A, Dhara M, Frisch W, Harb A, Shaib AH, Becherer U, Bruns D, Mohrmann R.
The SNAP-25 linker supports fusion intermediates by local lipid interactions.
Elife. 2019; 8. doi

Makke M, Mantero Martinez M, Gaya S, Schwarz Y, Frisch W, Silva-Bermudez L, Jung M, Mohrmann R, Dhara M, Bruns D.
A mechanism for exocytotic arrest by the Complexin C-terminus.
Elife. 2018, 7, 38981. doi

Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y, Shaaban A, Sharma S, Böckmann RA, Lindau M, Mohrmann R, Bruns D.
v-SNARE transmembrane domains function as catalysts for vesicle fusion.
Elife. 2016, 5. see Faculty of 1000,Biology signifiant contribution. doi

Bost A, Shaib AH, Schwarz Y, Niemeyer BA, Becherer U.
Large dense-core vesicle exocytosis from mouse dorsal root ganglion neurons is regulated by neuropeptide Y.
Neuroscience. 2017, 346, 1-13. doi

Schwarz Y, Zhao N, Kirchhoff F, Bruns D.
Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways.
Nat Neurosci. 2017. 20, 1529-1539, see Faculty of 1000. doi

Dhara M, Mohrmann R, Bruns D.
v-SNARE function in chromaffin cells.
Pflugers Arch. 2018, 470, 169-180. doi

Bröker-Lai J, Kollewe A, Schindeldecker B, Pohle J, Nguyen Chi V, Mathar I, Guzman R, Schwarz Y, Lai A, Weißgerber P, Schwegler H, Dietrich A, Both M, Sprengel R, Draguhn A, Köhr G, Fakler B, Flockerzi V, Bruns D, Freichel M.
Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory.
EMBO J. 2017, 36, 2770-2789. doi

Bruns D, Engert F, Lux HD.
A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo.
Neuron. 1993, 10, 559-72. doi

Bruns D, Jahn R.
Real-time measurement of transmitter release from single synaptic vesicles.
Nature. 1995 , 377, 62-5. see also: Principles of Neuroscience, 4th edition, Editors Kandel E. R., Schwartz J.H, Jessel T.M., p.268. doi

Fasshauer D, Bruns D, Shen B, Jahn R, Brünger AT.
A structural change occurs upon binding of syntaxin to SNAP-25.
J Biol Chem. 1997, 272, 4582-90. doi

Bruns D, Engers S, Yang C, Ossig R, Jeromin A, Jahn R.
Inhibition of transmitter release correlates with the proteolytic activity of tetanus toxin and botulinus toxin A in individual cultured synapses of Hirudo medicinalis.
J Neurosci. 1997, 17, 1898-910. doi

Bruns D, Jahn R.
Monoamine transmitter release from small synaptic and large dense-core vesicles.
Adv Pharmacol. 1998, 42, 87-90. doi

Bruns D.
Serotonin transport in cultured leech neurons.
Methods Enzymol. 1998, 296, 593-607. doi

Bruns D, Riedel D, Klingauf J, Jahn R.
Quantal release of serotonin.
Neuron. 2000, 28, 205-20. doi

Bruns D, Jahn R.
Molecular determinants of exocytosis.
Pflugers Arch. 2002, 443, 333-8. doi

Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R.
The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis.
J Biol Chem. 200, 278, 31159-66. doi

Yizhar O, Matti U, Melamed R, Hagalili Y, Bruns D, Rettig J, Ashery U.
Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner.
Proc Natl Acad Sci U S A. 2004, 101, 2578-83. doi

Bruns D.
Detection of transmitter release with carbon fiber electrodes.
Methods. 2004, 33, 312-21. doi

Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Südhof T, Bruns D.
v-SNAREs control exocytosis of vesicles from priming to fusion.
EMBO J. 2005 Jun 15;24(12):2114-26. Epub 2005 May 26.doi

Schütz D, Zilly F, Lang T, Jahn R, Bruns D.
A dual function for Munc-18 in exocytosis of PC12 cells.
Eur J Neurosci. 2005, 21, 2419-32. doi

Speidel D, Bruederle CE, Enk C, Voets T, Varoqueaux F, Reim K, Becherer U, Fornai F, Ruggieri S, Holighaus Y, Weihe E, Bruns D, Brose N, Rettig J.
CAPS1 regulates catecholamine loading of large dense-core vesicles.
Neuron. 2005, 46, 75-88. doi

Kesavan J, Borisovska M, Bruns D.
v-SNARE actions during Ca(2+)-triggered exocytosis.
Cell. 2007 131, 351-63. See faculty of 1000, Major advances. doi

Liu Y, Schirra C, Stevens DR, Matti U, Speidel D, Hof D, Bruns D, Brose N, Rettig J.
CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles.
J Neurosci. 2008, 28, 5594-601. doi

Gross SA, Guzmán GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalié A.
TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels.
J Biol Chem. 2009, 284, 34423-32. doi

Walter AM, Wiederhold K, Bruns D, Fasshauer D, Sørensen JB.
Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis.
J Cell Biol. 2010, 188, 401-13. doi

Guzman RE, Schwarz Y, Rettig J, Bruns D.
SNARE force synchronizes synaptic vesicle fusion and controls the kinetics of quantal synaptic transmission.
J Neurosci. 2010, 30, 10272-81. doi

Liu Y, Schirra C, Edelmann L, Matti U, Rhee J, Hof D, Bruns D, Brose N, Rieger H, Stevens DR, Rettig J.
Two distinct secretory vesicle-priming steps in adrenal chromaffin cells.
J Cell Biol. 2010, 190, 1067-77. doi

Ngatchou AN, Kisler K, Fang Q, Walter AM, Zhao Y, Bruns D, Sørensen JB, Lindau M.
Role of the synaptobrevin C terminus in fusion pore formation.
Proc Natl Acad Sci U S A. 2010, 107, 18463-8. doi

Feldmann A1, Amphornrat J, Schönherr M, Winterstein C, Möbius W, Ruhwedel T, Danglot L, Nave KA, Galli T, Bruns D, Trotter J, Krämer-Albers EM.
Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7.
J Neurosci. 2011, 31, 5659-72. doi

Molecular Neurophysiology

Univ.-Prof. Dr.
Dieter Bruns
   This email address is being protected from spambots. You need JavaScript enabled to view it.
  +49 6841/16-16494
  +49 6841/16-16492


Marina Roter

   This email address is being protected from spambots. You need JavaScript enabled to view it.

Saarland University
Faculty of Medicine
Institut of Physiology
Univ.-Prof. Dr. Dieter Bruns
CIPMM | Building 48
D-66421 Homburg