Accessibility Tools

Skip to main content

Cellular Neurophysiology


Selected Publications

  • Chang HF, Schirra C, Pattu V, Krause E, Becherer U  (2023) Lytic granule exocytosis at immune synapses: lessons from neuronal synapses . Frontiers in Immunology. 14, 1177670
  • Chang HF, Schirra C, Ninov M, Hahn U, Ravichandran K, Krause E, Becherer U, Bálint Š, Harkiolaki M, Urlaub H, Valitutti S, Baldari CT, Dustin ML, Jahn R, Rettig J. (2022) Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nat Commun. 13:1029. doi: 1038/s41467-022-28596-y
  • Staudt A, Ratai O, Bouzouina A, Fecher-Trost C, Shaaban A, Bzeih H, Horn A, Shaib AH, Klose M, Flockerzi V, Lauterbach MA, Rettig J, Becherer U. (2022) Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini.Front Mol Neurosci. 15:674243. doi: 13389/fnmol.2022.674243
  • Harb A, Vogel N, Shaib A, Becherer U, Bruns D, Mohrmann R. (2021) Auxiliary Subunits Regulate the Dendritic Turnover of AMPA Receptors in Mouse Hippocampal Neurons. Front Mol Neurosci. 14:728498. doi: 10.3389/fnmol.2021.728498
  • Dembla E, Becherer U. (2021) Biogenesis of large dense core vesicles in mouse chromaffin cells. Traffic. 22:78-93. doi: 10.1111/tra.12783
  • Schnöder L, Tomic I, Schwindt L, Helm D, Rettel M, Schulz-Schaeffer W, Krause E, Rettig J, Fassbender K, Liu Y. (2021) P38α-MAPK phosphorylates Snapin and reduces Snapin-mediated BACE1 transportation in APP-transgenic mice. FASEB J. 35:e21691. doi: 10.1096/fj.202100017R
  • Rettig J, Baldari CT. (2020) SMAPs: sweet carriers of lethal cargo for CTL-mediated killing.
  • Immunol Cell Biol. 98:524-527. doi: 10.1111/imcb.12367
  • Chitirala P, Chang HF, Martzloff P, Harenberg C, Ravichandran K, Abdulreda MH, Berggren PO, Krause E, Schirra C, Leinders-Zufall T, Benseler F, Brose N, Rettig J. (2020) Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. Elife. 9:e58065. doi: 7554/eLife.58065
  • Chang HF, Wirkner ML, Krause E, Rettig J. (2020) Investigation of Cytotoxic T Lymphocyte Function during Allorejection in the Anterior Chamber of the Eye. Int J Mol Sci. 21:4660. doi: 10.3390/ijms21134660
  • Galgano, D., Soheili, T., Voss, M., Torralba-Raga, L., Tesi, B., Cichocki, F., Andre, I., Rettig, J., Cavazzana, M., Bryceson, Y., 2020. Alternative UNC13D Promoter Encodes a Functional Munc13-4 Isoform Predominantly Expressed in Lymphocytes and Platelets.  Front Immunol. 2020 Jun 9;11:1154. doi.
  • Sleiman, M., Stevens, DR., Chitirala, P., Rettig, J., 2020. Cytotoxic Granule Trafficking and Fusion in Synaptotagmin7-Deficient Cytotoxic T Lymphocytes.  Front Immunol. 2020 May 29 11:1080. doi.
  • Chitirala, P.,Ravichandran, K.Schirra, C.Chang, HF.Krause, K., Kazmaier, U., Lauterbach, M.Rettig, J., 2020. Role of V-ATPase a3-Subunit in Mouse CTL Function.  J Immunol. 2020 May 15;204(10):2818-2828. doi.
  • Chitirala, P., Ravichandran, K., Galgano, D., Sleiman, M., Krause, E., Bryceson, Y.T., Rettig, J., 2019. Cytotoxic Granule Exocytosis From Human Cytotoxic T Lymphocytes Is Mediated by VAMP7. Front Immunol. 2019 Aug 7;10:1855. doi.
  • Estl, M., Blatt, P., Li, X., Becherer, U., Chang, HF., Rettig, J., Pattu, V., 2020. Various Stages of Immune Synapse Formation Are Differently Dependent on the Strength of the TCR Stimulus.  Int J Mol Sci. 2020 Apr 2;21(7):247. doi
  • Jiang, H., Esparza, TJ., Kummer, TT., Zhong, H., Rettig, J, 2020. Live Neuron High-Content Screening Reveals Synaptotoxic Activity in Alzheimer Mouse Model Homogenates. Jiang Brody DL. Sci Rep. 2020 Feb 25;10(1):3412. doi.
  • Oheim, M., Salomon, A., Weissman, A., Brunstein, M., Becherer, U., 2019. Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy. Biophys J 2019 Sep 3;117(5):795-809. doi.
  • Shaaban, A., Dhara, M., Frisch, W., Harb, A., Shaib, AH., Becherer, U., Bruns, D., Mohrmann, R., 2019. The SNAP-25 linker supports fusion intermediates by local lipid interactions.  Elife. 2019 Mar 18;8:e41720. doi.
  • Ratai, O.Schirra, C., Rajabov, E., Brunk, I., Ahnert-Hilger, G., Chitirala, P., Becherer, U., Stevens, DR., Rettig, J., 2019. An Alternative Exon of CAPS2 Influences Catecholamine Loading into LDCVs of Chromaffin Cells. J Neurosci 2019 Jan 2;39(1):18-27. doi.
  • Shaib, AH., Staudt, A., Harb, A., Klose, M., Shaaban, A., Schirra, C., Mohrmann, R., Rettig, J., Becherer, U., 2018. Paralogs of the Calcium-Dependent Activator Protein for Secretion Differentially Regulate Synaptic Transmission and Peptide Secretion in Sensory Neurons. Front Cell Neurosci. 2018 Sep 11;12:304. doi.
  • Klein, MC., Zimmermann, K., Schorr, S., Landini, M., Klemens, PAW., Altenteil, J., Jung, M., Krause, E., Nguyen, D., Helms, V., Rettig, J., Fecher-Trost, C., Cavalié, A., Hoth, M., Bogeski, I., Neuhaus, HE., Zimmermann, R., Lang, S., Haferkamp, I., 2018. AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nat Commun. 2018 Aug 28;9(1):3489. doi.
  • Chang, H.-F., Mannebach, S., Beck, A., Ravichandran, K., Krause, E., Frohnweiler, K., Fecher-Trost, C., Schirra, C., Pattu, V., Flockerzi, V., Rettig, J., 2018. Cytotoxic granule endocytosis depends on the Flower protein. J. Cell. Biol. 217, 667–683. doi

     

    Interview:

     

     

     
  • Sleiman, M., Stevens, D.R., Rettig, J., 2017. Simultaneous Membrane Capacitance Measurements and TIRF Microscopy to Study Granule Trafficking at Immune Synapses. Methods Mol. Biol. 1584, 157–169. doi.
  • Chang H.F., Bzeih H., Chitirala P., Ravinchandran K., Sleiman M., Krause E., Hahn U., Pattu V., Rettig J., 2017.  Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell Mol Life Sci. 2017;74(3):399-408. doi
  • Chang, H.F., Bzeih, H., Schirra, C., Chitirala, P., Halimani, M., Cordat, E., Krause, E., Rettig, J., Pattu, V., 2016. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes. J. Immunol. 197, 2473–2484. doi
  • Marshall, M.R., Pattu, V., Halimani, M., Maier-Peuschel, M., Müller, M.-L., Becherer, U., Hong, W., Hoth, M., Tschernig, T., Bryceson, Y.T., Rettig, J., 2015. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J. Cell Biol. 210, 135–151. doi
  • Matti, U., Pattu, V., Halimani, M., Schirra, C., Krause, E., Liu, Y., Weins, L., Chang, H.F., Guzman, R., Olausson, J., Freichel, M., Schmitz, F., Pasche, M., Becherer, U., Bruns, D., Rettig, J., 2013. Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion. Nat. Commun. 4, 1439. doi
  • Liu, Y., Schirra, C., Edelmann, L., Matti, U., Rhee, J., Hof, D., Bruns, D., Brose, N., Rieger, H., Stevens, D.R., Rettig, J., 2010. Two distinct secretory vesicle-priming steps in adrenal chromaffin cells. J. Cell Biol. 190, 1067–1077. doi
  • Nofal, S., Becherer, U., Hof, D., Matti, U., Rettig, J., 2007. Primed vesicles can be distinguished from docked vesicles by analyzing their mobility. J. Neurosci. 27, 1386–1395. doi
  • Speidel, D., Bruederle, C.E., Enk, C., Voets, T., Varoqueaux, F., Reim, K., Becherer, U., Fornai, F., Ruggieri, S., Holighaus, Y., Weihe, E., Bruns, D., Brose, N., Rettig, J., 2005. CAPS1 regulates catecholamine loading of large dense-core vesicles. Neuron 46, 75–88. doi
  • Stevens, D.R., Wu, Z.-X., Matti, U., Junge, H.J., Schirra, C., Becherer, U., Wojcik, S.M., Brose, N., Rettig, J., 2005. Identification of the minimal protein domain required for priming activity of Munc13-1. Curr. Biol. 15, 2243–2248. doi
  • Sørensen, J.B., Matti, U., Wei, S.-H., Nehring, R.B., Voets, T., Ashery, U., Binz, T., Neher, E., Rettig, J., 2002. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc. Natl. Acad. Sci. U.S.A. 99, 1627–1632. doi
  • Rettig, J., Neher, E., 2002. Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298, 781–785. doi
  • Betz, A., Thakur, P., Junge, H.J., Ashery, U., Rhee, J.S., Scheuss, V., Rosenmund, C., Rettig, J., Brose, N., 2001. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196. doi
  • Ashery, U., Varoqueaux, F., Voets, T., Betz, A., Thakur, P., Koch, H., Neher, E., Brose, N., Rettig, J., 2000. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J. 19, 3586–3596. doi
  • Betz, A., Ashery, U., Rickmann, M., Augustin, I., Neher, E., Südhof, T.C., Rettig, J., Brose, N., 1998. Munc13-1 Is a Presynaptic Phorbol Ester Receptor that Enhances Neurotransmitter Release. Neuron 21, 123–136. doi
  • Rettig, J., Sheng, Z.H., Kim, D.K., Hodson, C.D., Snutch, T.P., Catterall, W.A., 1996. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc. Natl. Acad. Sci. U.S.A. 93, 7363–7368. doi
  • Rettig, J., Heinemann, S.H., Wunder, F., Lorra, C., Parcej, D.N., Dolly, J.O., Pongs, O., 1994. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369, 289–294. doi
     

Full list of publications